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A Reinforcement Discrete Neuro-Adaptive Control
for Unknown Piezoelectric Actuator Systems

With Dominant Hysteresis
Chih-Lyang Hwang and Chau Jan

Abstract—The theoretical and experimental studies of a rein-
forcement discrete neuro-adaptive control for unknown piezoelec-
tric actuator systems with dominant hysteresis are presented. Two
separate nonlinear gains, together with an unknown linear dynam-
ical system, construct the nonlinear model (NM) of the piezoelec-
tric actuator systems. A nonlinear inverse control (NIC) according
to the learned NM is then designed to compensate the hysteretic
phenomenon and to track the reference input without the risk of
discontinuous response. Because the uncertainties are dynamic, a
recurrent neural network (RNN) with residue compensation is em-
ployed to model them in a compact subset. Then, a discrete neuro-
adaptive sliding-mode control (DNASMC) is designed to enhance
the system performance. The stability of the overall system is ver-
ified by Lyapunov stability theory. Comparative experiments for
various control schemes are also given to confirm the validity of
the proposed control.

Index Terms—Hysteresis, learning law with projection, piezo-
electric actuator, recurrent neural network (RNN), sliding-mode
control.

I. INTRODUCTION

H YSTERESIS is nondifferential, multivalued, usually
unknown, and commonly existing in physical systems

[1]–[10], e.g., piezoelectric actuator. There are many ap-
plications using piezoelectric actuators, e.g., rotor bearing
[1], diamond turning [8], scanning accuracy [2], vibration
suppression [4], grinding table [5], microlithography [9]. The
existence of hysteresis often severely limits the performance of
the piezoelectric actuator, e.g., undesirable oscillation or even
instability. Hence, how to design an effective controller for
dealing with the hysteretic feature becomes a very important
topic.

Cruz-Hernandez and Hayward [7] introduce a variable phase,
an operator that shifts its periodic input signal by a phase angle
that depends on the magnitude of the input signal. However, this
study must redesign for different piezoelectric actuators. Tao
and Kokotovic [3] use a simplified hysteresis model that cap-
tures most of the hysteresis characteristic; the design uses an
adaptive hysteresis inverse cascade with the system so that the
system becomes a linear structure with uncertainties. However,
the linear dynamic system must satisfy some assumptions, e.g.,
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Fig. 1. Hysteresis characteristic.

minimum phase system, known relative degree. Ge and Jouaneh
[6] discuss a comparison between a forward control, a regular
proportional integral derivative (PID) control and a PID feed-
back control with hysteretic modeling in the feedforward loop.
The result shows that the tracking control performance is greatly
improved by augmenting the feedback loop with a model of hys-
teresis in the feedforward loop. However, the result is only valid
for tracking a sinusoidal trajectory.

Because the different polarity or amplitude of the input signal
causes the different hysteretic loop (cf. Fig. 1 for various op-
erating ranges of piezoelectric actuator), an effective nonlinear
inverse control (NIC) is difficult to design. Under the circum-
stances, a NIC is constructed to prevent a discontinuous re-
sponse and to partially cancel the nonlinearity of hysteresis (e.g.,
[10], [11]). Only the remaining uncertainty is required to learn
by a neural network. The system performance is better than that
using the learning of whole nonlinear dynamics (e.g., [12]). This
is one of the motivations of this study.

Because the remaining uncertainty is dynamic, a suitable re-
current neural network (RNN) is easily designed to improve the
approximation online. A RNN can cope with time-varying input
or output through its own natural temporal operation. Hence, the
same number of neurons used for the RNN, can model the dy-
namic uncertainties to achieve the required accuracy [12]–[15].
Then, an online RNN with residue compensation is designed
to deal with the remaining dynamic uncertainties. This is the
second motivation of the study.
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Fig. 2. Block diagram of nonlinear inverse control.

Fig. 3. Block diagram of the proposed control.

Without the requirement of persistent excitation, a learning
law with projection is given to guarantee the boundedness of
the learning weight with adjustable convergent rate. The initial
values of weight can be set to zero (i.e., no compensation for
the uncertainty with respect to robust control). This character-
istic makes the suggested control more practical, because many
neural-network controls are difficult to assign an initial value
for the connection weight (e.g., [13] and [14]) Then a discrete
neuro-adaptive sliding-mode control (DNASMC) is constructed
to improve the system performance. This is the third motiva-
tion of the paper. Finally, the comparative experiments (for the
open-loop control, PID control, NIC, NIC PID control, and
the proposed control system) are arranged to verify the effec-
tiveness of the proposed control.

II. NIC AND TRACKING ERRORMODEL

In Section II-A, a nonlinear model (NM) for hysteresis is in-
troduced. In Section II-B, a NIC is given. In Section II-C, a
tracking error model resulting from the proposed NIC is derived.

A. NM for Hysteresis

Consider the following unknown systems with dominant hys-
teresis:

(1a)

(1b)

where and denote the system output and input,
represents an unknown hysteresis (cf. Fig. 1), stands for
the output of hysteresis which is unavailable, is a known
time delay, denotes the backward-time shift operator, and

and denote two unknown coprime polynomials
but is stable and monic.

A NM is first employed to learn the hysteretic behavior of the
piezoelectric actuators. Without the risk of abrupt response, a
NIC (cf. Fig. 2) based on the learned NM is designed to approx-
imately cancel the unknown hysteresis and to attain an accept-
able tracking performance. After an approximate cancellation
of hysteresis and a design of trajectory tracking, a DNASMC
is constructed to tackle the resulting linear tracking error dy-
namic system with uncertainties (cf. Fig. 3). The main feature of
DNASMC is to use an on-line RNN with residue compensation
to approximate a possibility of enormous uncertainty caused by
the modeling error (e.g., different polarity or amplitude of the
input, or an external load) and learning law. Without the con-
dition of persistent excitation for the basis function of RNN,
a learning law with projection is also designed to ensure the
boundedness of the learning weight with adjustable convergent
rate.
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B. NIC

There often has an NIC for a controlled system with hard
nonlinearity (cf. [10], [11]). Here, the following NM (e.g., [10])
is first considered:

(2)

(3)

where

(4)

The weights , for ,
and for are achieved by an offline learning. In
addition, the signals and denote the output of an
estimated nonlinear static and dynamic model of hysteresis in
(1a) and (1b), respectively. It should be noted that the hysteresis
is approximated by two nonlinear functions in (2), according to
the change rate (or polarity) and the amplitude of the .
That is, an optimal model to approximate the dynamics of (1) is
described as follows:

(5)
as
as (6)

where , , for
, , , for , 2, 3 are not

necessarily unique and dependent on the amplitude of the input
signal. Generally, , . The modeling of the
nonlinear model can refer to [10].

After effective learning and model verification, a suitable
order of the system (1) can be determined. Under this circum-
stance, the nonlinear function in (2) becomes a function of

only. Its inverse function for positive and negative
are described as follows:

(7)

(8)

For simplicity, an optimal set of , for is
chosen for the possible amplitude of the input signal. Based
on the concept of inverse control and zero-phase tracking con-
trol, the following NIC (cf. Fig. 2) without the risk of discon-
tinuous response is accomplished as shown in (9) and (10) at
the bottom of the page, where is defined as the time that

and

(11)

where is stable and monic and the notations of
, denote the stable and unstable part of
, respectively. As the discontinuity of nonlinear model

is large, is chosen as a large integer. That is, an improve-
ment in (10) reduces the hysteretic error caused by the
discontinuity of the model.

C. Tracking Error Model

The NIC not only approximately cancels the hysteretic effect
but also tracks a trajectory with following result:

(12)

where is the reference input and ,
denotes an external disturbance that is relatively bounded, and
we have (13) and (14), shown at the bottom of the page. The
signal denotes the uncertainties caused by the forward
control, and the symbol denotes the uncertainties
caused by the approximation of hysteresis. Because an accurate
modeling of unknown system with hysteresis is difficult to ob-
tain, the tracking error based on NIC is generally not superior

as
as

(9)

otherwise
(10)

(13)

(14)
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[1]–[10]. To compensate theses phenomena, a DNASMC is af-
filiated with the previous NIC (cf. Fig. 3). Then the error-model
of closed-loop system in Fig. 3 is depicted as follows:

(15)

The subsequent work is to design a DNASMC so that
is as small as possible under the uncertainties and

, the unknown polynomials , , and an
external disturbance . Before designing the DNASMC, the
following upper bound of the approximation error of hysteresis
[cf. (14)] is estimated:

where and are known. (16)

First, one rewrites (15) into a state-space form

(17)

(18)

where the triplex corresponds to the nominal (or
optimal) system of (15) which is known, observable, and con-
trollable, the triplex corresponds to the uncer-
tainties caused by the difference between the linear nominal
system and unknown linear system. For instance, the nominal
system of (17) and (18) is written as the following observable
canonical form:

...
...

...

...
(19)

where . The system state can be rep-
resented by the combination of ,

and the uncertainties ,
, , and [17]. That is

(20)

(21)

where

(22)

(23)

Because , the scalar
. The recursive processing of (21) in backward direction yields

(24)

Together with (18) and (24), the following equation is achieved.

(25)

where we have (26)–(29), shown at the bottom of the page. Be-
cause the uncertainties are functions of , we
must cope with them; i.e.,

(30)

(26)

(27)

(28)

(29)
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where

(31)

(32)

Similarly, for . Those are omitted because they are
not used for the controller analysis. The purpose of this subsec-
tion is to express the state in terms of tracking error, input, and
uncertainty.

III. DNASMC

In this section, we discuss the design of DNASMC.

A. RNN With Residue Compensation

The unknown nonlinear function can be described as
follows (cf. [12]):

(33)

Remark 1: The constant matrices in (33) are not unique and
satisfy the following inequalities: ,

, where , , and
are known, and denotes
the Frobenius norm.

Then the following matrix-form approximator of RNN is
given:

(34)

where , , denote the corre-
sponding learning weights of , , , and

. The function

approximation error in a linearly parameterized
form of , for that can be
expressed as

(35)

where

(36)

(37)

The approximation is used in the con-

trol law to cancel the unknown nonlinear function . The

first and second terms of is canceled (or

improved) by the learning law of weights , and
. Although the residue is unknown, an upper

bound of can be achieved as follows (see [12]):

(38a)

where we have (38b), shown at the bottom of the page.

B. DNASMC

Define the following sliding surface with proportional and
integral properties:

(39)

where , the zero at is employed to eliminate any
constant in and the coefficients is chosen
such that is Hurwitz. In general, .

Consider the following projection learning laws with ad-
justable convergent rate:

(40)
where we have (41)–(46), shown at the bottom of the next
page, where , ,
for , and is a known constant. The
learning laws of weight matrices (40) have learning rates
for , error function , and specific basis
functions in for except and . In
general, the learning rate (i.e., for ) must be

(38b)
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chosen small enough to avoid the instability of the closed-loop
system, as the number of weight is large [12]–[15]. The
projection term in (40) is used to guarantee that

as and a better convergent rate (via
for ) as compared with traditional learning

law (e.g., [13]–[15]).
The following assumption is required for the derivation of the

proposed DNASMC in Theorem 1, as shown in the last equation
at the bottom of the page, whereis known,

, and .
The uncertainty caused by , , , ,

, and is expressed as follows:

(47)

where is described in (23). It is approximated by the fol-
lowing RNN:

as

(48)

where , as ,

where and denotes the ab-
solute location of the set. The following uncertain signal
(without showing their arguments) derived from the difference
of sliding surface, i.e., (cf. (A4)), is
required for the design of switching control (53) of DNASMC

(49)

Taking the norm of (49) by using the result of Remark 1 gives
the following upper bound the uncertain signal :

(41)

(42)

(43)

(44)

if , or if

if
(45)

(46)
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(50)

The following theorem is the main theorem of the current paper
and examines the properties of system (17) and (18) controlled
by DNASMC (51)–(57).

Theorem 1: Consider the system (17) and (18) and the fol-
lowing controller:

(51)

where we have (52) and (53), shown at the bottom of the page,
where . The amplitude
of switching gains is obtained from the following
inequality:

(54)

where

(55)

(56)

(57)

If the overall system satisfies (A1) and
(A2) and , then

are
uniformly ultimately bounded (UUB), and the following
performance (58) is achieved

and (58)

where we have (59)–(61), shown at the bottom of the page.
Proof: See the Appendix.

(52)

if

otherwise.
(53)

(59)

(60)

(61)
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(a)

Fig. 4. Experimental setup of the overall system. (a) Photograph. (b) Control
block diagram.

IV. EXPERIMENTS

In this section, we discuss the experimental setup, modeling,
and experimental results.

A. Experimental Setup

The piezoelectric actuator system consists of two parts: 1)
piezomechanism: piezotranslator, position sensor, driver, and
carriage mechanism and 2) personal computer: AD/DA card and
control program. The block diagram of the experimental setup is
shown in Fig. 4. The carriage mechanism is made of steel for en-
hancing the strength of the mechanism. Four linear guides pro-
vided by THK Co. (Model no. VRU3088) are used to support
the moving part of the mechanism. Furthermore, a high-speed
spindle with weight 3.5 kg (Model no. PRECISE 3040) is fixed
on the carriage mechanism. The piezotranslator is a Model no.
P-246.70 from Physical Instrument (PI) Company. Its specifi-
cations are briefly described as follows: maximum expansion
120 m, electric capacitance 3000 nF, stiffness 190 Nm, res-
onant frequency 3.5 kHz, and temperature expansion 2m K .
The position signal is achieved from the position sensor (Model
no. P-177.10 of PI Co.). The signal is sent to a 16 bit A/D card
(PCL-816) in an 80 586 personal computer. Together with a ref-
erence input in the computer program written by Turbo C, the

Fig. 5. Output responses of the system (…) and mathematical model (–) using
the input3 + 24 sin(10�k) + 12cos(40�k) �m for the model.

control signal is calculated. The control input through the
D/A card is then sent to the driver (Model no. P-271.10 from
PI Co.). The output voltage of driver, between200 and 1000
V, is employed to drive the piezotranslator. The different po-
sition signal is accomplished by using a different input signal.
The process is repeated until the total process time is over. The
time required for every process is called the “control cycle time
( s).”

B. Modeling

Based on the offline learning of the piezoelectric actuator, the
nominal coefficients of (2) and (3) are described as follows:

The proposed piezoelectric actuator is generally used for the fre-
quency range 0–30 Hz and the amplitude range50 m. Based
on the application, the signal with the frequencies 0, 5, and 20
Hz, and the amplitude between27 and 38 m is assumed as
the input for the model verification. The corresponding result
of the model verification is shown in Fig. 5 that the maximum
modeling error is about 10% of the maximum amplitude of the
input signal. It is acceptable because the NIC is used for many
different amplitudes or frequencies of the reference input. The
remaining uncertainty is then tackled by the DNASMC.

C. Experimental Results

The reference input is assigned as
m consisting of frequencies 0, 5, and 20 Hz.

In addition, the open-loop response of the piezoelectric actu-
ator system for this reference input is presented in Fig. 6. Its
maximum tracking error is about 31.5% of the maximum am-
plitude of the reference input. It indicates that the response of
the open-loop system is poor.
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Fig. 6. Open-loop response of the piezoelectric actuator (–) for the reference
input3 + 24 sin(10�k) + 12cos(40�k) �m (…).

Fig. 7. Output response of the PID (–) control for the reference input3 +
24 sin(10�k) + 12cos(40�k) �m (…).

In addition, the PID controller is applied to control the piezo-
electric actuator system for this reference input. The form of the
discrete-time PID controller is expressed as follows (cf. [6]):

(62)

The output response of only PID control with ,
, and is shown in Fig. 7 that is oscillatory. Be-

cause the piezoceramic materials are ferroelectric, they have in-
herent nonlinearity and hysteresis. If the parameteris se-
lected too high, the oscillation becomes grave. The other selec-
tions of control parameters for (62) have a similar response of
Fig. 7.

Sequentially, the output response by using the forward con-
trol (NIC) is presented in Fig. 8; its maximum tracking error is
about 19.4% of the maximum amplitude of the reference input.
The main reason is that only use of NIC cannot achieve an ex-
cellent tracking result as the system is subject to the uncertain-

Fig. 8. Output response of the NIC (–) for the reference input
3 + 24 sin(10�k) + 12cos(40�k) �m (…).

Fig. 9. Output response of the NIC and PID control (–) for the reference input
3 + 24 sin(10�k) + 12cos(40�k) �m (…).

ties caused by different polarities or frequencies of the reference
input. In this situation, the output response by using the forward
control (NIC) and PID control (62) with , ,

is shown in Fig. 9. Because the hysteretic be-
havior of the piezoelectric actuator system is canceled by the
forward control, the tracking control performance is better than
that using only the PID control (62) (cf. Figs. 7 and 9). However,
its maximum tracking error is about 9.8% of the maximum am-
plitude of the reference input that is still large.

Under the circumstances, the proposed DNASMC
is applied to reinforce the system performance. The
sliding surface is first selected as follows:

. The
control parameters are chosen as follows: , ,

, , , ,
(learning rate) and , , ,

(e-modification rate). The response of the proposed
control is then shown in Fig. 10. As compared to the perfor-
mance of the NIC and PID control, the tracking performance
of Fig. 10(a) is indeed much better than that of Figs. 8 and
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(a) (b)

(c) (d)

Fig. 10. (a)The output response of the proposed control (–) for the reference input3+24 sin(10�k)+12cos(40�k)�m (…). (b) The tracking error response of
the proposed control for the reference input3+24 sin(10�k)+12cos(40�k)�m. (c) The control input response of the proposed control for the reference input
3+ 24 sin(10�k)+ 12cos(40�k) �m. (d) The sliding surface response of the proposed control for the reference input3+ 24 sin(10�k)+ 12cos(40�k) �m.

9. For clearness, its corresponding tracking error is shown
in Fig. 10(b); its maximum steady-state tracking error is
about 4.9% of the maximum amplitude of the reference input.
Fig. 10(c) shows the corresponding control input that is smooth
enough. The corresponding response of the sliding surface is
shown in Fig. 10(d). The performances for the other control
parameters are similar with the results of Fig. 10. Due to space
considerations, those are omitted. In short, once a suitable set
of control parameters are obtained from the simulation, the se-
lection of them is not critical. For simplicity, the corresponding
simulations are not presented.

V. CONCLUSION

The proposed controller includes an NIC based on a learned
nonlinear model and a DNASMC based on an on-line approx-
imation of huge dynamic uncertainties by using an RNN. The
proposed RNN possesses the residue compensation of the un-
certainty caused by the learning. The features of the nonlinear

model and the network have their necessities and advantages.
Without the risk of discontinuous response, the NIC cancels the
hysteretic phenomenon and tracks the reference input in an ac-
ceptable manner. Furthermore, a DNASMC does not need the
state estimator. This is the first time to use the aforementioned
concepts for the control of the piezoelectric actuator with dom-
inant hysteresis. The comparisons among the open-loop con-
trol, the PID control, the NIC, the NIC PID control, and the
proposed control, are also given to verify the usefulness of the
proposed control. From the experimental results, the proposed
control effectively deals with a class of systems having domi-
nant hysteresis. The trajectory to be tracked is not limited to a
sinusoidal signal. The authors believe that the proposed control
can be applied to many other control problems.

APPENDIX

Without ambiguity, the arguments of variables in the fol-
lowing appendixes are omitted.
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Define the following Lyapunov function:

(A1)

where .
1) The case of is first investigated.
From (40) and (A1), the change rate of

is described as shown in (A2), shown
at the bottom of the page, where . Using
(39), (17), (25), (51) and (52) gives the following in (A3),
shown at the bottom of the page, where the third and fourth
equalities have used the facts
and , respectively,
is shown in (54), and

(A4)

Assume that (or ) where
. Then, the fol-

lowing equation is achieved by using (53) for

, the in-

equalities , , and assumption
(A2).

(A5)

where the expressions of and are
shown in (55) and (56). Because

,

and . The result (54) is achieved from the
inequality . In short, the switching gain
chosen from (54) makes . Furthermore, from

(A2)

(A3)
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(A2), we have (A6) at the bottom of the page.Based on the
mathematical preliminary of operator and (41)–(44), the
following equalities are achieved:

(A7)

Moreover, the following inequalities are attained from (44) and
(38).

(A8)

Suppose that for . If

, then the fol-
lowing result is achieved from (A6)–(A8).

See (A9) at the bottom of the page, where
, . Hence,

(A10)

where . Hence, outside of the domain in (63)
making is accomplished.

2) Then, the case of

is examined as follows.
The above results in (A6) have the extra second term in the

right-hand side of (48). See equation (A11) at the bottom of the
page, where

(A12)

for (A6)

(A9)

(A11)
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Based on the definition of and operator

(A13)

Then from (A12) and (A13) , if and

. That is, the projection algorithm

(40) of second case makes of the first case more
negative. Because , and the constant value

exists, then as .
.
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